# apolipoprotein L, 1 # apolipoprotein L, 1 # arylsulfatase B # Baculoviral IAP repeat-containing protein 5 # BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 # calnexin # Caspase 8 levels # Caspase-3 # C-C motif chemokine ligand 2 # Cyclin-dependent kinase inhibitor 1B # Cathepsin L1 levels # cathepsin D # Cathepsin B # Cathepsin L1 levels # C-X3-C motif chemokine ligand 1 # Death-associated protein kinase 2 # DnaJ homolog subfamily B member 9 # Glutamate receptor ionotropic, delta-2 # Interferon gamma # Gamma-aminobutyric acid receptor-associated protein-like 1 # Gamma-aminobutyric acid receptor-associated protein-like 2 # Glutamate receptor ionotropic, delta-2 # Mitogen-activated protein kinase 1 # Mitogen-activated protein kinase 3 # Mitogen-activated protein kinase 8 # Nicotinamide phosphoribosyltransferase # Next to BRCA1 gene 1 protein # PTK6 # sphingosine kinase 1 # Vesicle-associated membrane protein 3 # vascular endothelial growth factor A #在线孟德尔分析 #加载包 library(TwoSampleMR) # install.packages("ieugwasr") library(ieugwasr) # 登陆token Sys.setenv(OPENGWAS_JWT="eyJhbGciOiJSUzI1NiIsImtpZCI6ImFwaS1qd3QiLCJ0eXAiOiJKV1QifQ.eyJpc3MiOiJhcGkub3Blbmd3YXMuaW8iLCJhdWQiOiJhcGkub3Blbmd3YXMuaW8iLCJzdWIiOiJ6anQ3ODU2MzIxQGhvdG1haWwuY29tIiwiaWF0IjoxNzI0NTg2NzM3LCJleHAiOjE3MjU3OTYzMzd9.hseY1Y4YiYJ4WWi-WoQmm0VWQA6Ozqurj08HvJV8q6xh7D4Jfv5o3zdwBvU_4HhC87C59KWgXaBm5ZiMynqLSp5uFLlai_5ObswpbdLHtNRghZYti0wF7TRTGcXPa9_ICWvrEoIRNoAyj10I1nOrPE9RhRL0PrzHOYb9Y3L7oBDzmsch-boFLYE3R9ZhUoZSMMiZYNR9_PmYbJi2Lrd6C_tI1fCna9jzF5vHsQQReYgy4IS59rr_lDEwdE46dCIq2cHoDIZJ4ohArPHtoLaw5CXf0yUrY89Xo2J5KnVWHtzlFK7EEgOIpx1DX6mSgrVxXtvlFSM-j7K1qbM9Awr6JQ") ieugwasr::user() Coronary_artery_disease_list = c("ebi-a-GCST005195", "ebi-a-GCST005194") autoghagy_list <- c("prot-a-134", "prot-a-135", "prot-a-172", "prot-a-252" , "prot-a-261", "prot-a-353", "ebi-a-GCST90012072", "prot-a-364", "prot-b-4", "prot-a-495", "ebi-a-GCST90012073", "prot-b-51", "prot-a-718", "ebi-a-GCST90012073", "prot-b-70", "prot-a-763", "prot-a-842", "prot-a-1276", "prot-a-1428", "prot-a-1161", "prot-a-1162", "prot-a-1276","prot-a-1845", "prot-a-1848", "prot-a-1849", "prot-a-1998", "prot-a-2004","prot-a-2536","ebi-a-GCST90000502") result_all <- data.frame() for (i in seq_along(Coronary_artery_disease_list)) { for (j in seq_along(autoghagy_list)) { #两样本MR(在线读) #提取蛋白的SNP print(autoghagy_list[j]) autoghagy <- extract_instruments(outcomes = autoghagy_list[j]) #提取SNP在结局中的信息 print(Coronary_artery_disease_list[i]) outcome_dat <- extract_outcome_data(snps = autoghagy$SNP, outcomes = Coronary_artery_disease_list[i]) #合并暴露和结局的数据 dat <- harmonise_data(autoghagy, outcome_dat) #分析MR result <- mr(dat) result_all <- rbind(result_all, result) } } # 保存为 CSV 文件 write.csv(result_all, file = "result_all.csv", row.names = FALSE) a = read.csv("result_all.csv") autoghagy <- extract_instruments(outcomes = "ebi-a-GCST90000502") #提取SNP在结局中的信息 print(Coronary_artery_disease_list[i]) outcome_dat <- extract_outcome_data(snps = autoghagy$SNP, outcomes = "ebi-a-GCST005194") #合并暴露和结局的数据 dat <- harmonise_data(autoghagy, outcome_dat) #分析MR result <- mr(dat) # #由于结局是二分类,所以生成OR值 # OR <- generate_odds_ratios(results) # # 异质性检验 # heterogeneity <- mr_heterogeneity(dat) # res_MRPRESSO <- run_mr_presso(dat) # # 多效性检验 # pleiotropy <- mr_pleiotropy_test(dat) # pleiotropy # #散点图 # mr_scatter_plot(results, dat) # #留一图 # leaveoneout <- mr_leaveoneout(dat) # mr_leaveoneout_plot(leaveoneout) # #森林图 # results_single <- mr_singlesnp(dat) # mr_forest_plot(results_single) # #漏斗图 # mr_funnel_plot(results_single) # 本地文件孟德尔分析 install.packages("vroom") library(vroom) setwd("/root/zjt") a <- vroom("11510_31_APOL1_Apo_L1.txt", col_names = TRUE)