123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- import pandas as pd
- import numpy as np
- import pyreadstat
- #统一列名
- def change_columns(df):
- df.columns = ["ID",'householdID','communityID','sex', "birth_year", "marital_status" , 'province', 'city',"Height", "Weight",
- "Systolic","Diastolic",
- 'bl_wbc','bl_mcv','bl_plt','bl_bun','bl_glu','bl_crea','bl_cho', 'bl_tg', 'bl_hdl', 'bl_ldl','bl_crp',
- 'bl_hbalc','bl_ua', 'bl_hct', 'bl_hgb','bl_cysc',
- 'Hypertension','Dyslipidemia','Disabetes_or_High_Blood_Sugar','Cancer_or_Malignant_Tumor','Chronic_Lung_Diseases',
- 'Liver_Disease', 'Heart_Problems', 'Stroke', ' Kidney_Diease','Stomach_or_Other_Digestive_Disease',
- 'Emotional_Nervous_or_Psychiatric_Problems', ' Memory_Related_Disease',' Arthritis_or_Rheumatism','Asthma',
-
- 'Vigorous_Activities', 'Moderate_Physical_Effort','Walking','Vigorous_Activities_day', 'Moderate_Physical_Effort_day',
- 'Walking_day','Vigorous_Activities_2h', 'Moderate_Physical_Effort_2h','Walking_2h','Vigorous_Activities_30m',
- 'Moderate_Physical_Effort_30m','Walking_30m','Vigorous_Activities_4h', 'Moderate_Physical_Effort_4h','Walking_4h',
-
- 'Smoke', 'Smoke_still','Number_Cigarettes','Drink',
-
- "Cognition_score", "Psychiatric_score", "wave"
- ]
- # 2020年把帕金森和记忆病症分开,需要和以前对齐
- def process_row(row):
- da002_12_ = row['da003_12_']
- da002_13_ = row['da003_13_']
-
- if da002_12_ == 1 or da002_13_ == 1:
- return 1
- elif da002_12_ == 2 and da002_13_ == 2:
- return 2
- elif (da002_12_ == 2 and pd.isna(da002_13_)) or (pd.isna(da002_12_) and da002_13_ == 2):
- return 2
- elif pd.isna(da002_12_) and pd.isna(da002_13_):
- return np.nan
- else:
- return np.nan # 预防万一,其余情况下设为NA
-
- def update_da051(value):
- if value == 1:
- return 3
- elif value == 3:
- return 1
- else:
- return value
-
- if __name__ == "__main__":
- # 2011年
- year = "2011"
- demo, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/demographic_background.dta")
- psu, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/psu.dta", encoding='gbk')
- biomarkers, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/biomarkers.dta")
- blood, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Blood_20140429.dta")
- health_status, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/health_status_and_functioning.dta")
- health_care, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/health_care_and_insurance.dta")
- exp_income, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/exp_income_wealth.dta")
- #性别#年龄#居住地#婚姻状况
- # 1 Married with spouse present
- # 2 Married but not living with spouse temporarily for reasons such as work
- # 3 Separated
- # 4 Divorced
- # 5 Widowed
- # 6 Never married
- data_2011 = demo[['ID','householdID', 'communityID','rgender','ba002_1','be001']]
- #居住地
- data_2011 = pd.merge(data_2011, psu[['communityID', 'province', 'city']], on = "communityID", how="left")
- #身高#体重#收缩压#舒张压
- biomarkers_select = biomarkers[['ID','householdID', 'communityID','qi002','ql002','qa011','qa012']]
- data_2011 = pd.merge(data_2011, biomarkers_select, on = ["ID", "householdID", "communityID"], how="left")
- #白细胞(WBC),平均红血球容积MCV,血小板,血尿素氮bun,葡萄糖glu,血肌酐crea,总胆固醇cho,甘油三酯tg,高密度脂蛋白HDL,低密度脂蛋白胆固醇LDL,C反应蛋白CRP
- #糖化血红蛋白hba1c,尿酸ua,血细胞比容Hematocrit,血红蛋白hgb,胱抑素C
- blood = blood.loc[:, blood.columns.difference(["bloodweight", "qc1_va003"])]
- data_2011 = pd.merge(data_2011, blood, on = ["ID"], how="left")
- # 慢性病:
- # (1) Hypertension 高血压病
- # (2) Dyslipidemia (elevation of low density lipoprotein, triglycerides (TGs),and total cholesterol, or a low high density lipoprotein level)血脂异常(包括低密度脂蛋白、甘油三酯、总胆固醇的升高或(和)高密度脂蛋白的下降)
- # (3) Diabetes or high blood sugar糖尿病或血糖升高(包括糖耐量异常和空腹血糖升高)
- # (4) Cancer or malignant tumor (excluding minor skin cancers) 癌症等恶性肿瘤(不包括轻度皮肤癌)
- # (5) Chronic lung diseases, such as chronic bronchitis , emphysema ( excluding tumors, or cancer) 慢性肺部疾患如慢性支气管炎或肺气肿、肺心病(不包括肿瘤或癌)
- # (6) Liver disease (except fatty liver, tumors, and cancer) 肝脏疾病
- # (除脂肪肝、肿瘤或癌外)
- # (7) Heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems 心脏病(如心肌梗塞、冠心病、心绞痛、充血性心力衰竭和其他心脏疾病)
- # (8) Stroke 中风
- # (9) Kidney disease (except for tumor or cancer) 肾脏疾病(不包括肿瘤或癌)
- # (10) Stomach or other digestive disease (except for tumor or cancer) 胃部疾病或消化系统疾病(不包括肿瘤或癌)
- # (11) Emotional, nervous, or psychiatric problems 情感及精神方面问题
- # (12) Memory-related disease 与记忆相关的疾病 (如老年痴呆症、脑萎缩、帕金森症)
- # (13) Arthritis or rheumatism 关节炎或风湿病
- # (14) Asthma 哮喘
- health_status_select = health_status[['ID','householdID', 'communityID', 'da007_1_', 'da007_2_','da007_3_'
- ,'da007_4_','da007_5_','da007_6_','da007_7_','da007_8_','da007_9_','da007_10_','da007_11_'
- ,'da007_12_','da007_13_','da007_14_','da051_1_','da051_2_', 'da051_3_'
- ,'da052_1_','da052_2_','da052_3_','da053_1_','da053_2_','da053_3_','da054_1_','da054_2_','da054_3_'
- ,'da055_1_','da055_2_','da055_3_', 'da059','da061','da063'
- ,'da069']]
-
- data_2011 = pd.merge(data_2011, health_status_select, on = ["ID", 'householdID', 'communityID'], how="left")
- #计算认知功能得分,分成三部分:电话问卷10分,词语回忆10分、画图1分
- health_status["dc001s1_score"] = health_status["dc001s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc001s2_score"] = health_status["dc001s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc001s3_score"] = health_status["dc001s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc002_score"] = health_status["dc002"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc003_score"] = health_status["dc003"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc019_score"] = health_status["dc019"].apply(lambda x : 1 if x==93 else 0 if pd.isna(x) else 0)
- health_status["dc020_score"] = health_status["dc020"].apply(lambda x : 1 if x==86 else 0 if pd.isna(x) else 0)
- health_status["dc021_score"] = health_status["dc021"].apply(lambda x : 1 if x==79 else 0 if pd.isna(x) else 0)
- health_status["dc022_score"] = health_status["dc022"].apply(lambda x : 1 if x==72 else 0 if pd.isna(x) else 0)
- health_status["dc023_score"] = health_status["dc023"].apply(lambda x : 1 if x==65 else 0 if pd.isna(x) else 0)
- #词语记忆
- health_status["dc006s1_score"] = health_status["dc006s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc006s2_score"] = health_status["dc006s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc006s3_score"] = health_status["dc006s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc006s4_score"] = health_status["dc006s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc006s5_score"] = health_status["dc006s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc006s6_score"] = health_status["dc006s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc006s7_score"] = health_status["dc006s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc006s8_score"] = health_status["dc006s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc006s9_score"] = health_status["dc006s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc006s10_score"] = health_status["dc006s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc006s11_score"] = health_status["dc006s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- health_status["dc027s1_score"] = health_status["dc027s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc027s2_score"] = health_status["dc027s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc027s3_score"] = health_status["dc027s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc027s4_score"] = health_status["dc027s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc027s5_score"] = health_status["dc027s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc027s6_score"] = health_status["dc027s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc027s7_score"] = health_status["dc027s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc027s8_score"] = health_status["dc027s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc027s9_score"] = health_status["dc027s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc027s10_score"] = health_status["dc027s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc027s11_score"] = health_status["dc027s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- #画图
- health_status["draw_score"] = health_status["dc025"].apply(lambda x : 1 if x==1 else 0)
- data_2011["Cognition_score"] = health_status["dc001s1_score"] + health_status["dc001s2_score"] + \
- health_status["dc001s3_score"] + health_status["dc002_score"]+ health_status["dc003_score"]+ \
- health_status["dc019_score"]+ health_status["dc020_score"] + health_status["dc021_score"]+ \
- health_status["dc022_score"]+ health_status["dc023_score"] + health_status["dc006s1_score"] + \
- health_status["dc006s2_score"] + health_status["dc006s3_score"] + health_status["dc006s4_score"] + \
- health_status["dc006s5_score"] + health_status["dc006s6_score"] + health_status["dc006s7_score"] + \
- health_status["dc006s8_score"] + health_status["dc006s9_score"] + health_status["dc006s10_score"] + \
- health_status["dc006s11_score"] + health_status["dc027s1_score"]+ health_status["dc027s2_score"]+ \
- health_status["dc027s3_score"]+ health_status["dc027s4_score"]+ health_status["dc027s5_score"]+ \
- health_status["dc027s6_score"]+ health_status["dc027s7_score"]+ health_status["dc027s8_score"]+ \
- health_status["dc027s9_score"]+health_status["dc027s10_score"]+health_status["dc027s11_score"]+\
- health_status["draw_score"]
- #心理得分
- health_status["dc009_score"] = health_status["dc009"]-1
- health_status["dc010_score"] = health_status["dc010"]-1
- health_status["dc011_score"] = health_status["dc011"]-1
- health_status["dc012_score"] = health_status["dc012"]-1
- health_status["dc013_score"] = 4 - health_status["dc013"]
- health_status["dc014_score"] = health_status["dc014"]-1
- health_status["dc015_score"] = health_status["dc015"]-1
- health_status["dc016_score"] = 4 - health_status["dc016"]
- health_status["dc017_score"] = health_status["dc017"]-1
- health_status["dc018_score"] = health_status["dc018"]-1
- data_2011["psychiatric_score"] = health_status["dc009_score"] + health_status["dc010_score"] + health_status["dc011_score"] + \
- health_status["dc012_score"] + health_status["dc013_score"] + health_status["dc014_score"] + health_status["dc015_score"] + \
- health_status["dc016_score"] + health_status["dc017_score"] + health_status["dc018_score"]
- data_2011["wave"] = year
- change_columns(data_2011)
- # 2013年
- year = "2013"
- demo, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Demographic_Background.dta")
- psu, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/PSU.dta", encoding='gbk')
- biomarkers, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Biomarker.dta")
- health_status, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Status_and_Functioning.dta")
- health_care, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Care_and_Insurance.dta")
- exp_income, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/exp_income_wealth.dta")
- #性别#年龄#婚姻状况
- # 1 Married with spouse present
- # 2 Married but not living with spouse temporarily for reasons such as work
- # 3 Separated
- # 4 Divorced
- # 5 Widowed
- # 6 Never married
- data_2013 = demo[['ID','householdID', 'communityID','ba000_w2_3','zba002_1','be001']]
- #居住地
- data_2013 = pd.merge(data_2013, psu[['communityID', 'province', 'city']], on = "communityID", how="left")
- #身高#体重#收缩压#舒张压
- biomarkers_select = biomarkers[['ID','householdID', 'communityID','qi002','ql002','qa011','qa012']]
- data_2013 = pd.merge(data_2013, biomarkers_select, on = ["ID", "householdID", "communityID"], how="left")
- #白细胞(WBC),平均红血球容积MCV,血小板,血尿素氮bun,葡萄糖glu,血肌酐crea,总胆固醇cho,甘油三酯tg,高密度脂蛋白HDL,低密度脂蛋白胆固醇LDL,C反应蛋白CRP
- #糖化血红蛋白hba1c,尿酸ua,血细胞比容Hematocrit,血红蛋白hgb,胱抑素C
- data_2013[['bl_wbc','bl_mcv','bl_plt','bl_bun','bl_glu','bl_crea','bl_cho', 'bl_tg', 'bl_hdl', 'bl_ldl','bl_crp','bl_hbalc','bl_ua', 'bl_hct', 'bl_hgb','bl_cysc']]=np.nan
-
- # 慢性病:
- # (1) Hypertension 高血压病
- # (2) Dyslipidemia (elevation of low density lipoprotein, triglycerides (TGs),and total cholesterol, or a low high density lipoprotein level)血脂异常(包括低密度脂蛋白、甘油三酯、总胆固醇的升高或(和)高密度脂蛋白的下降)
- # (3) Diabetes or high blood sugar糖尿病或血糖升高(包括糖耐量异常和空腹血糖升高)
- # (4) Cancer or malignant tumor (excluding minor skin cancers) 癌症等恶性肿瘤(不包括轻度皮肤癌)
- # (5) Chronic lung diseases, such as chronic bronchitis , emphysema ( excluding tumors, or cancer) 慢性肺部疾患如慢性支气管炎或肺气肿、肺心病(不包括肿瘤或癌)
- # (6) Liver disease (except fatty liver, tumors, and cancer) 肝脏疾病
- # (除脂肪肝、肿瘤或癌外)
- # (7) Heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems 心脏病(如心肌梗塞、冠心病、心绞痛、充血性心力衰竭和其他心脏疾病)
- # (8) Stroke 中风
- # (9) Kidney disease (except for tumor or cancer) 肾脏疾病(不包括肿瘤或癌)
- # (10) Stomach or other digestive disease (except for tumor or cancer) 胃部疾病或消化系统疾病(不包括肿瘤或癌)
- # (11) Emotional, nervous, or psychiatric problems 情感及精神方面问题
- # (12) Memory-related disease 与记忆相关的疾病 (如老年痴呆症、脑萎缩、帕金森症)
- # (13) Arthritis or rheumatism 关节炎或风湿病
- # (14) Asthma 哮喘
- health_status_select = health_status[['ID','householdID', 'communityID', 'da007_1_', 'da007_2_','da007_3_'
- ,'da007_4_','da007_5_','da007_6_','da007_7_','da007_8_','da007_9_','da007_10_','da007_11_'
- ,'da007_12_','da007_13_','da007_14_','da051_1_','da051_2_', 'da051_3_'
- ,'da052_1_','da052_2_','da052_3_','da053_1_','da053_2_','da053_3_','da054_1_','da054_2_','da054_3_'
- ,'da055_1_','da055_2_','da055_3_', 'da059','da061','da063'
- ,'da069']]
-
- data_2013 = pd.merge(data_2013, health_status_select, on = ["ID", 'householdID', 'communityID'], how="left")
- #计算认知功能得分,分成三部分:电话问卷10分,词语回忆10分、画图1分
- health_status["dc001s1_score"] = health_status["dc001s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc001s2_score"] = health_status["dc001s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc001s3_score"] = health_status["dc001s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc002_score"] = health_status["dc002"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc003_score"] = health_status["dc003"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc019_score"] = health_status["dc019"].apply(lambda x : 1 if x==93 else 0 if pd.isna(x) else 0)
- health_status["dc020_score"] = health_status["dc020"].apply(lambda x : 1 if x==86 else 0 if pd.isna(x) else 0)
- health_status["dc021_score"] = health_status["dc021"].apply(lambda x : 1 if x==79 else 0 if pd.isna(x) else 0)
- health_status["dc022_score"] = health_status["dc022"].apply(lambda x : 1 if x==72 else 0 if pd.isna(x) else 0)
- health_status["dc023_score"] = health_status["dc023"].apply(lambda x : 1 if x==65 else 0 if pd.isna(x) else 0)
- #词语记忆
- health_status["dc006s1_score"] = health_status["dc006_1_s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc006s2_score"] = health_status["dc006_1_s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc006s3_score"] = health_status["dc006_1_s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc006s4_score"] = health_status["dc006_1_s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc006s5_score"] = health_status["dc006_1_s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc006s6_score"] = health_status["dc006_1_s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc006s7_score"] = health_status["dc006_1_s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc006s8_score"] = health_status["dc006_1_s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc006s9_score"] = health_status["dc006_1_s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc006s10_score"] = health_status["dc006_1_s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc006s11_score"] = health_status["dc006_1_s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- health_status["dc027s1_score"] = health_status["dc027s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc027s2_score"] = health_status["dc027s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc027s3_score"] = health_status["dc027s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc027s4_score"] = health_status["dc027s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc027s5_score"] = health_status["dc027s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc027s6_score"] = health_status["dc027s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc027s7_score"] = health_status["dc027s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc027s8_score"] = health_status["dc027s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc027s9_score"] = health_status["dc027s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc027s10_score"] = health_status["dc027s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc027s11_score"] = health_status["dc027s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- #画图
- health_status["draw_score"] = health_status["dc025"].apply(lambda x : 1 if x==1 else 0)
- data_2013["Cognition_score"] = health_status["dc001s1_score"] + health_status["dc001s2_score"] + \
- health_status["dc001s3_score"] + health_status["dc002_score"]+ health_status["dc003_score"]+ \
- health_status["dc019_score"]+ health_status["dc020_score"] + health_status["dc021_score"]+ \
- health_status["dc022_score"]+ health_status["dc023_score"] + health_status["dc006s1_score"] + \
- health_status["dc006s2_score"] + health_status["dc006s3_score"] + health_status["dc006s4_score"] + \
- health_status["dc006s5_score"] + health_status["dc006s6_score"] + health_status["dc006s7_score"] + \
- health_status["dc006s8_score"] + health_status["dc006s9_score"] + health_status["dc006s10_score"] + \
- health_status["dc006s11_score"] + health_status["dc027s1_score"]+ health_status["dc027s2_score"]+ \
- health_status["dc027s3_score"]+ health_status["dc027s4_score"]+ health_status["dc027s5_score"]+ \
- health_status["dc027s6_score"]+ health_status["dc027s7_score"]+ health_status["dc027s8_score"]+ \
- health_status["dc027s9_score"]+health_status["dc027s10_score"]+health_status["dc027s11_score"]+\
- health_status["draw_score"]
- #心理得分
- health_status["dc009_score"] = health_status["dc009"]-1
- health_status["dc010_score"] = health_status["dc010"]-1
- health_status["dc011_score"] = health_status["dc011"]-1
- health_status["dc012_score"] = health_status["dc012"]-1
- health_status["dc013_score"] = 4 - health_status["dc013"]
- health_status["dc014_score"] = health_status["dc014"]-1
- health_status["dc015_score"] = health_status["dc015"]-1
- health_status["dc016_score"] = 4 - health_status["dc016"]
- health_status["dc017_score"] = health_status["dc017"]-1
- health_status["dc018_score"] = health_status["dc018"]-1
- data_2013["psychiatric_score"] = health_status["dc009_score"] + health_status["dc010_score"] + health_status["dc011_score"] + \
- health_status["dc012_score"] + health_status["dc013_score"] + health_status["dc014_score"] + health_status["dc015_score"] + \
- health_status["dc016_score"] + health_status["dc017_score"] + health_status["dc018_score"]
- data_2013["wave"] = year
- change_columns(data_2013)
- data_2013 = pd.concat([data_2011, data_2013], axis=0)
- # 2015年
- year = "2015"
- demo, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Demographic_Background.dta")
- psu, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS2013/PSU.dta", encoding='gbk')
- blood, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Blood.dta")
- biomarkers, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Biomarker.dta")
- health_status, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Status_and_Functioning.dta")
- health_care, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Care_and_Insurance.dta")
- #性别#年龄#婚姻状况
- # 1 Married with spouse present
- # 2 Married but not living with spouse temporarily for reasons such as work
- # 3 Separated
- # 4 Divorced
- # 5 Widowed
- # 6 Never married
- data_2015 = demo[['ID','householdID', 'communityID','ba000_w2_3', 'ba004_w3_1', 'be001']]
- # 处理出生年的问题
- data_2015['ba004_w3_1'] = demo.apply(lambda row: row['ba002_1'] if row['ba002'] == 2 else row['ba004_w3_1'], axis=1)
- #居住地
- data_2015 = pd.merge(data_2015, psu[['communityID', 'province', 'city']], on = "communityID", how="left")
- #身高#体重#收缩压#舒张压
- biomarkers_select = biomarkers[['ID','householdID', 'communityID','qi002', 'ql002', 'qa011','qa012']]
- data_2015 = pd.merge(data_2015, biomarkers_select, on = ["ID", "householdID", "communityID"], how="left")
- #白细胞(WBC),平均红血球容积MCV,血小板,血尿素氮bun,葡萄糖glu,血肌酐crea,总胆固醇cho,甘油三酯tg,高密度脂蛋白HDL,低密度脂蛋白胆固醇LDL,C反应蛋白CRP
- #糖化血红蛋白hba1c,尿酸ua,血细胞比容Hematocrit,血红蛋白hgb,胱抑素C
- blood = blood[['ID', 'bl_wbc','bl_mcv','bl_plt','bl_bun','bl_glu','bl_crea','bl_cho', 'bl_tg', 'bl_hdl', 'bl_ldl','bl_crp','bl_hbalc','bl_ua', 'bl_hct', 'bl_hgb','bl_cysc']]
- data_2015 = pd.merge(data_2015, blood, on = ["ID"], how="left")
-
- # 慢性病:
- # (1) Hypertension 高血压病
- # (2) Dyslipidemia (elevation of low density lipoprotein, triglycerides (TGs),and total cholesterol, or a low high density lipoprotein level)血脂异常(包括低密度脂蛋白、甘油三酯、总胆固醇的升高或(和)高密度脂蛋白的下降)
- # (3) Diabetes or high blood sugar糖尿病或血糖升高(包括糖耐量异常和空腹血糖升高)
- # (4) Cancer or malignant tumor (excluding minor skin cancers) 癌症等恶性肿瘤(不包括轻度皮肤癌)
- # (5) Chronic lung diseases, such as chronic bronchitis , emphysema ( excluding tumors, or cancer) 慢性肺部疾患如慢性支气管炎或肺气肿、肺心病(不包括肿瘤或癌)
- # (6) Liver disease (except fatty liver, tumors, and cancer) 肝脏疾病
- # (除脂肪肝、肿瘤或癌外)
- # (7) Heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems 心脏病(如心肌梗塞、冠心病、心绞痛、充血性心力衰竭和其他心脏疾病)
- # (8) Stroke 中风
- # (9) Kidney disease (except for tumor or cancer) 肾脏疾病(不包括肿瘤或癌)
- # (10) Stomach or other digestive disease (except for tumor or cancer) 胃部疾病或消化系统疾病(不包括肿瘤或癌)
- # (11) Emotional, nervous, or psychiatric problems 情感及精神方面问题
- # (12) Memory-related disease 与记忆相关的疾病 (如老年痴呆症、脑萎缩、帕金森症)
- # (13) Arthritis or rheumatism 关节炎或风湿病
- # (14) Asthma 哮喘
- health_status_select = health_status[['ID','householdID', 'communityID', 'da007_1_', 'da007_2_','da007_3_'
- ,'da007_4_','da007_5_','da007_6_','da007_7_','da007_8_','da007_9_','da007_10_','da007_11_'
- ,'da007_12_','da007_13_','da007_14_','da051_1_','da051_2_', 'da051_3_'
- ,'da052_1_','da052_2_','da052_3_','da053_1_','da053_2_','da053_3_','da054_1_','da054_2_','da054_3_'
- ,'da055_1_','da055_2_','da055_3_', 'da059','da061','da063'
- ,'da069']]
-
- data_2015 = pd.merge(data_2015, health_status_select, on = ["ID", 'householdID', 'communityID'], how="left")
- #计算认知功能得分,分成三部分:电话问卷10分,词语回忆10分、画图1分
- health_status["dc001s1_score"] = health_status["dc001s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc001s2_score"] = health_status["dc001s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc001s3_score"] = health_status["dc001s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc002_score"] = health_status["dc002"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc003_score"] = health_status["dc003"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc019_score"] = health_status["dc019"].apply(lambda x : 1 if x==93 else 0 if pd.isna(x) else 0)
- health_status["dc020_score"] = health_status["dc020"].apply(lambda x : 1 if x==86 else 0 if pd.isna(x) else 0)
- health_status["dc021_score"] = health_status["dc021"].apply(lambda x : 1 if x==79 else 0 if pd.isna(x) else 0)
- health_status["dc022_score"] = health_status["dc022"].apply(lambda x : 1 if x==72 else 0 if pd.isna(x) else 0)
- health_status["dc023_score"] = health_status["dc023"].apply(lambda x : 1 if x==65 else 0 if pd.isna(x) else 0)
- #词语记忆
- health_status["dc006s1_score"] = health_status["dc006s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc006s2_score"] = health_status["dc006s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc006s3_score"] = health_status["dc006s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc006s4_score"] = health_status["dc006s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc006s5_score"] = health_status["dc006s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc006s6_score"] = health_status["dc006s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc006s7_score"] = health_status["dc006s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc006s8_score"] = health_status["dc006s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc006s9_score"] = health_status["dc006s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc006s10_score"] = health_status["dc006s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc006s11_score"] = health_status["dc006s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- health_status["dc027s1_score"] = health_status["dc027s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc027s2_score"] = health_status["dc027s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc027s3_score"] = health_status["dc027s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc027s4_score"] = health_status["dc027s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc027s5_score"] = health_status["dc027s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc027s6_score"] = health_status["dc027s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc027s7_score"] = health_status["dc027s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc027s8_score"] = health_status["dc027s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc027s9_score"] = health_status["dc027s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc027s10_score"] = health_status["dc027s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc027s11_score"] = health_status["dc027s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- #画图
- health_status["draw_score"] = health_status["dc025"].apply(lambda x : 1 if x==1 else 0)
- data_2015["Cognition_score"] = health_status["dc001s1_score"] + health_status["dc001s2_score"] + \
- health_status["dc001s3_score"] + health_status["dc002_score"]+ health_status["dc003_score"]+ \
- health_status["dc019_score"]+ health_status["dc020_score"] + health_status["dc021_score"]+ \
- health_status["dc022_score"]+ health_status["dc023_score"] + health_status["dc006s1_score"] + \
- health_status["dc006s2_score"] + health_status["dc006s3_score"] + health_status["dc006s4_score"] + \
- health_status["dc006s5_score"] + health_status["dc006s6_score"] + health_status["dc006s7_score"] + \
- health_status["dc006s8_score"] + health_status["dc006s9_score"] + health_status["dc006s10_score"] + \
- health_status["dc006s11_score"] + health_status["dc027s1_score"]+ health_status["dc027s2_score"]+ \
- health_status["dc027s3_score"]+ health_status["dc027s4_score"]+ health_status["dc027s5_score"]+ \
- health_status["dc027s6_score"]+ health_status["dc027s7_score"]+ health_status["dc027s8_score"]+ \
- health_status["dc027s9_score"]+health_status["dc027s10_score"]+health_status["dc027s11_score"]+\
- health_status["draw_score"]
- #心理得分
- health_status["dc009_score"] = health_status["dc009"]-1
- health_status["dc010_score"] = health_status["dc010"]-1
- health_status["dc011_score"] = health_status["dc011"]-1
- health_status["dc012_score"] = health_status["dc012"]-1
- health_status["dc013_score"] = 4 - health_status["dc013"]
- health_status["dc014_score"] = health_status["dc014"]-1
- health_status["dc015_score"] = health_status["dc015"]-1
- health_status["dc016_score"] = 4 - health_status["dc016"]
- health_status["dc017_score"] = health_status["dc017"]-1
- health_status["dc018_score"] = health_status["dc018"]-1
- data_2015["psychiatric_score"] = health_status["dc009_score"] + health_status["dc010_score"] + health_status["dc011_score"] + \
- health_status["dc012_score"] + health_status["dc013_score"] + health_status["dc014_score"] + health_status["dc015_score"] + \
- health_status["dc016_score"] + health_status["dc017_score"] + health_status["dc018_score"]
- data_2015["wave"] = year
- change_columns(data_2015)
- data_2015 = pd.concat([data_2013, data_2015], axis=0)
- # 2018年
- year = "2018"
- demo, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Demographic_Background.dta")
- psu, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS2013/PSU.dta", encoding='gbk')
- health_status, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Status_and_Functioning.dta")
- health_care, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Care_and_Insurance.dta")
- cognition, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Cognition.dta")
- #性别#年龄#婚姻状况
- # 1 Married with spouse present
- # 2 Married but not living with spouse temporarily for reasons such as work
- # 3 Separated
- # 4 Divorced
- # 5 Widowed
- # 6 Never married
- data_2018 = demo[['ID','householdID', 'communityID','ba000_w2_3', 'ba004_w3_1', 'be001']]
- #居住地
- data_2018 = pd.merge(data_2018, psu[['communityID', 'province', 'city']], on = "communityID", how="left")
- #身高#体重#收缩压#舒张压
- data_2018[['qi002', 'ql002', 'qa011','qa012']]=np.nan
- #白细胞(WBC),平均红血球容积MCV,血小板,血尿素氮bun,葡萄糖glu,血肌酐crea,总胆固醇cho,甘油三酯tg,高密度脂蛋白HDL,低密度脂蛋白胆固醇LDL,C反应蛋白CRP
- #糖化血红蛋白hba1c,尿酸ua,血细胞比容Hematocrit,血红蛋白hgb,胱抑素C
- data_2018[['bl_wbc','bl_mcv','bl_plt','bl_bun','bl_glu','bl_crea','bl_cho', 'bl_tg', 'bl_hdl', 'bl_ldl','bl_crp','bl_hbalc','bl_ua', 'bl_hct', 'bl_hgb','bl_cysc']]=np.nan
-
- # 慢性病:
- # (1) Hypertension 高血压病
- # (2) Dyslipidemia (elevation of low density lipoprotein, triglycerides (TGs),and total cholesterol, or a low high density lipoprotein level)血脂异常(包括低密度脂蛋白、甘油三酯、总胆固醇的升高或(和)高密度脂蛋白的下降)
- # (3) Diabetes or high blood sugar糖尿病或血糖升高(包括糖耐量异常和空腹血糖升高)
- # (4) Cancer or malignant tumor (excluding minor skin cancers) 癌症等恶性肿瘤(不包括轻度皮肤癌)
- # (5) Chronic lung diseases, such as chronic bronchitis , emphysema ( excluding tumors, or cancer) 慢性肺部疾患如慢性支气管炎或肺气肿、肺心病(不包括肿瘤或癌)
- # (6) Liver disease (except fatty liver, tumors, and cancer) 肝脏疾病
- # (除脂肪肝、肿瘤或癌外)
- # (7) Heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems 心脏病(如心肌梗塞、冠心病、心绞痛、充血性心力衰竭和其他心脏疾病)
- # (8) Stroke 中风
- # (9) Kidney disease (except for tumor or cancer) 肾脏疾病(不包括肿瘤或癌)
- # (10) Stomach or other digestive disease (except for tumor or cancer) 胃部疾病或消化系统疾病(不包括肿瘤或癌)
- # (11) Emotional, nervous, or psychiatric problems 情感及精神方面问题
- # (12) Memory-related disease 与记忆相关的疾病 (如老年痴呆症、脑萎缩、帕金森症)
- # (13) Arthritis or rheumatism 关节炎或风湿病
- # (14) Asthma 哮喘
- health_status_select = health_status[['ID','householdID', 'communityID', 'da007_1_', 'da007_2_','da007_3_'
- ,'da007_4_','da007_5_','da007_6_','da007_7_','da007_8_','da007_9_','da007_10_','da007_11_'
- ,'da007_12_','da007_13_','da007_14_','da051_1_','da051_2_', 'da051_3_'
- ,'da052_1_','da052_2_','da052_3_','da053_1_','da053_2_','da053_3_','da054_1_','da054_2_','da054_3_'
- ,'da055_1_','da055_2_','da055_3_', 'da059','da061','da063'
- ,'da069']]
- data_2018 = pd.merge(data_2018, health_status_select, on = ["ID", 'householdID', 'communityID'], how="left")
- #计算认知功能得分,分成三部分:电话问卷10分,词语回忆10分、画图1分
- cognition["dc001s1_score"] = cognition["dc001_w4"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- cognition["dc001s2_score"] = cognition["dc006_w4"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- cognition["dc001s3_score"] = cognition["dc003_w4"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- cognition["dc002_score"] = cognition["dc005_w4"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- cognition["dc003_score"] = cognition["dc002_w4"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- cognition["dc019_score"] = cognition["dc014_w4_1_1"].apply(lambda x : 1 if x==93 else 0 if pd.isna(x) else 0)
- cognition["dc020_score"] = cognition["dc014_w4_2_1"].apply(lambda x : 1 if x==86 else 0 if pd.isna(x) else 0)
- cognition["dc021_score"] = cognition["dc014_w4_3_1"].apply(lambda x : 1 if x==79 else 0 if pd.isna(x) else 0)
- cognition["dc022_score"] = cognition["dc014_w4_4_1"].apply(lambda x : 1 if x==72 else 0 if pd.isna(x) else 0)
- cognition["dc023_score"] = cognition["dc014_w4_5_1"].apply(lambda x : 1 if x==65 else 0 if pd.isna(x) else 0)
- #词语记忆
- cognition["dc006s1_score"] = cognition["dc028_w4_s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- cognition["dc006s2_score"] = cognition["dc028_w4_s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- cognition["dc006s3_score"] = cognition["dc028_w4_s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- cognition["dc006s4_score"] = cognition["dc028_w4_s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- cognition["dc006s5_score"] = cognition["dc028_w4_s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- cognition["dc006s6_score"] = cognition["dc028_w4_s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- cognition["dc006s7_score"] = cognition["dc028_w4_s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- cognition["dc006s8_score"] = cognition["dc028_w4_s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- cognition["dc006s9_score"] = cognition["dc028_w4_s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- cognition["dc006s10_score"] = cognition["dc028_w4_s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- cognition["dc006s11_score"] = cognition["dc028_w4_s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- cognition["dc027s1_score"] = cognition["dc047_w4_s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- cognition["dc027s2_score"] = cognition["dc047_w4_s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- cognition["dc027s3_score"] = cognition["dc047_w4_s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- cognition["dc027s4_score"] = cognition["dc047_w4_s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- cognition["dc027s5_score"] = cognition["dc047_w4_s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- cognition["dc027s6_score"] = cognition["dc047_w4_s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- cognition["dc027s7_score"] = cognition["dc047_w4_s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- cognition["dc027s8_score"] = cognition["dc047_w4_s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- cognition["dc027s9_score"] = cognition["dc047_w4_s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- cognition["dc027s10_score"] = cognition["dc047_w4_s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- cognition["dc027s11_score"] = cognition["dc047_w4_s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- #画图
- cognition["draw_score"] = cognition["dc024_w4"].apply(lambda x : 1 if x==1 else 0)
- data_2018["Cognition_score"] = cognition["dc001s1_score"] + cognition["dc001s2_score"] + \
- cognition["dc001s3_score"] + cognition["dc002_score"]+ cognition["dc003_score"]+ \
- cognition["dc019_score"]+ cognition["dc020_score"] + cognition["dc021_score"]+ \
- cognition["dc022_score"]+ cognition["dc023_score"] + cognition["dc006s1_score"] + \
- cognition["dc006s2_score"] + cognition["dc006s3_score"] + cognition["dc006s4_score"] + \
- cognition["dc006s5_score"] + cognition["dc006s6_score"] + cognition["dc006s7_score"] + \
- cognition["dc006s8_score"] + cognition["dc006s9_score"] + cognition["dc006s10_score"] + \
- cognition["dc006s11_score"] + cognition["dc027s1_score"]+ cognition["dc027s2_score"]+ \
- cognition["dc027s3_score"]+ cognition["dc027s4_score"]+ cognition["dc027s5_score"]+ \
- cognition["dc027s6_score"]+ cognition["dc027s7_score"]+ cognition["dc027s8_score"]+ \
- cognition["dc027s9_score"]+cognition["dc027s10_score"]+cognition["dc027s11_score"]+\
- cognition["draw_score"]
- #心理得分
- cognition["dc009_score"] = cognition["dc009"]-1
- cognition["dc010_score"] = cognition["dc010"]-1
- cognition["dc011_score"] = cognition["dc011"]-1
- cognition["dc012_score"] = cognition["dc012"]-1
- cognition["dc013_score"] = 4 - cognition["dc013"]
- cognition["dc014_score"] = cognition["dc014"]-1
- cognition["dc015_score"] = cognition["dc015"]-1
- cognition["dc016_score"] = 4 - cognition["dc016"]
- cognition["dc017_score"] = cognition["dc017"]-1
- cognition["dc018_score"] = cognition["dc018"]-1
- data_2018["psychiatric_score"] = cognition["dc009_score"] + cognition["dc010_score"] + cognition["dc011_score"] + \
- cognition["dc012_score"] + cognition["dc013_score"] + cognition["dc014_score"] + cognition["dc015_score"] + \
- cognition["dc016_score"] + cognition["dc017_score"] + cognition["dc018_score"]
- data_2018["wave"] = year
- change_columns(data_2018)
- data_2018 = pd.concat([data_2015, data_2018], axis=0)
- # 2020年
- year = "2020"
- demo, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Demographic_Background.dta")
- psu, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS2013/PSU.dta", encoding='gbk')
- health_status, meta = pyreadstat.read_dta("/root/r_base/CHARLS/CHARLS"+year+"/Health_Status_and_Functioning.dta")
- #性别#年龄#婚姻状况
- # 1 Married with spouse present
- # 2 Married but not living with spouse temporarily for reasons such as work
- # 3 Separated
- # 4 Divorced
- # 5 Widowed
- # 6 Never married
- data_2020 = demo[['ID','householdID', 'communityID','ba001', 'ba003_1','ba011']]
- #居住地
- data_2020 = pd.merge(data_2020, psu[['communityID', 'province', 'city']], on = "communityID", how="left")
- #身高#体重#收缩压#舒张压
- data_2020[['qi002', 'ql002', 'qa011','qa012', 'qa013']]=np.nan
- #白细胞(WBC),平均红血球容积MCV,血小板,血尿素氮bun,葡萄糖glu,血肌酐crea,总胆固醇cho,甘油三酯tg,高密度脂蛋白HDL,低密度脂蛋白胆固醇LDL,C反应蛋白CRP
- #糖化血红蛋白hba1c,尿酸ua,血细胞比容Hematocrit,血红蛋白hgb,胱抑素C
- data_2020[['bl_wbc','bl_mcv','bl_plt','bl_bun','bl_glu','bl_crea','bl_cho', 'bl_tg', 'bl_hdl', 'bl_ldl','bl_crp','bl_hbalc','bl_ua', 'bl_hct', 'bl_hgb','bl_cysc']]=np.nan
-
- # 慢性病:
- # (1) Hypertension 高血压病
- # (2) Dyslipidemia (elevation of low density lipoprotein, triglycerides (TGs),and total cholesterol, or a low high density lipoprotein level)血脂异常(包括低密度脂蛋白、甘油三酯、总胆固醇的升高或(和)高密度脂蛋白的下降)
- # (3) Diabetes or high blood sugar糖尿病或血糖升高(包括糖耐量异常和空腹血糖升高)
- # (4) Cancer or malignant tumor (excluding minor skin cancers) 癌症等恶性肿瘤(不包括轻度皮肤癌)
- # (5) Chronic lung diseases, such as chronic bronchitis , emphysema ( excluding tumors, or cancer) 慢性肺部疾患如慢性支气管炎或肺气肿、肺心病(不包括肿瘤或癌)
- # (6) Liver disease (except fatty liver, tumors, and cancer) 肝脏疾病
- # (除脂肪肝、肿瘤或癌外)
- # (7) Heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems 心脏病(如心肌梗塞、冠心病、心绞痛、充血性心力衰竭和其他心脏疾病)
- # (8) Stroke 中风
- # (9) Kidney disease (except for tumor or cancer) 肾脏疾病(不包括肿瘤或癌)
- # (10) Stomach or other digestive disease (except for tumor or cancer) 胃部疾病或消化系统疾病(不包括肿瘤或癌)
- # (11) Emotional, nervous, or psychiatric problems 情感及精神方面问题
- # (12) Memory-related disease 与记忆相关的疾病 (如老年痴呆症、脑萎缩、帕金森症)
- # (13) Arthritis or rheumatism 关节炎或风湿病
- # (14) Asthma 哮喘
- # 2020年把帕金森和记忆病症分开,需要和以前对齐
- health_status['da003_12_'] = health_status.apply(process_row, axis=1)
- health_status_select = health_status[['ID','householdID', 'communityID', 'da003_1_', 'da003_2_','da003_3_'
- ,'da003_4_','da003_5_','da003_6_','da003_7_','da003_8_','da003_9_','da003_10_','da003_11_'
- ,'da003_12_','da003_14_','da003_15_','da032_1_','da032_2_', 'da032_3_'
- ,'da033_1_','da033_2_','da033_3_','da034_1_','da034_2_','da034_3_','da035_1_','da035_2_','da035_3_'
- ,'da036_1_','da036_2_','da036_3_', 'da046','da047','da050_1'
- ,'da051']]
- health_status_select['da051'] = health_status_select['da051'].apply(update_da051)
-
- data_2020 = pd.merge(data_2020, health_status_select, on = ["ID", 'householdID', 'communityID'], how="left")
- #计算认知功能得分,分成三部分:电话问卷10分,词语回忆10分、画图1分
- health_status["dc001s1_score"] = health_status["dc001"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc001s2_score"] = health_status["dc005"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc001s3_score"] = health_status["dc003"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc002_score"] = health_status["dc004"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc003_score"] = health_status["dc002"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc019_score"] = health_status["dc007_1"].apply(lambda x : 1 if x==93 else 0 if pd.isna(x) else 0)
- health_status["dc020_score"] = health_status["dc007_2"].apply(lambda x : 1 if x==86 else 0 if pd.isna(x) else 0)
- health_status["dc021_score"] = health_status["dc007_3"].apply(lambda x : 1 if x==79 else 0 if pd.isna(x) else 0)
- health_status["dc022_score"] = health_status["dc007_4"].apply(lambda x : 1 if x==72 else 0 if pd.isna(x) else 0)
- health_status["dc023_score"] = health_status["dc007_5"].apply(lambda x : 1 if x==65 else 0 if pd.isna(x) else 0)
- #词语记忆
- health_status["dc006s1_score"] = health_status["dc012_s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc006s2_score"] = health_status["dc012_s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc006s3_score"] = health_status["dc012_s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc006s4_score"] = health_status["dc012_s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc006s5_score"] = health_status["dc012_s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc006s6_score"] = health_status["dc012_s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc006s7_score"] = health_status["dc012_s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc006s8_score"] = health_status["dc012_s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc006s9_score"] = health_status["dc012_s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc006s10_score"] = health_status["dc012_s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc006s11_score"] = health_status["dc012_s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- health_status["dc027s1_score"] = health_status["dc028_s1"].apply(lambda x : 1 if x==1 else 0 if pd.isna(x) else 0)
- health_status["dc027s2_score"] = health_status["dc028_s2"].apply(lambda x : 1 if x==2 else 0 if pd.isna(x) else 0)
- health_status["dc027s3_score"] = health_status["dc028_s3"].apply(lambda x : 1 if x==3 else 0 if pd.isna(x) else 0)
- health_status["dc027s4_score"] = health_status["dc028_s4"].apply(lambda x : 1 if x==4 else 0 if pd.isna(x) else 0)
- health_status["dc027s5_score"] = health_status["dc028_s5"].apply(lambda x : 1 if x==5 else 0 if pd.isna(x) else 0)
- health_status["dc027s6_score"] = health_status["dc028_s6"].apply(lambda x : 1 if x==6 else 0 if pd.isna(x) else 0)
- health_status["dc027s7_score"] = health_status["dc028_s7"].apply(lambda x : 1 if x==7 else 0 if pd.isna(x) else 0)
- health_status["dc027s8_score"] = health_status["dc028_s8"].apply(lambda x : 1 if x==8 else 0 if pd.isna(x) else 0)
- health_status["dc027s9_score"] = health_status["dc028_s9"].apply(lambda x : 1 if x==9 else 0 if pd.isna(x) else 0)
- health_status["dc027s10_score"] = health_status["dc028_s10"].apply(lambda x : 1 if x==10 else 0 if pd.isna(x) else 0)
- health_status["dc027s11_score"] = health_status["dc028_s11"].apply(lambda x : 1 if x==11 else 0 if pd.isna(x) else 0)
- #画图
- health_status["draw_score"] = health_status["dc009"].apply(lambda x : 1 if x==1 else 0)
- data_2011["Cognition_score"] = health_status["dc001s1_score"] + health_status["dc001s2_score"] + \
- health_status["dc001s3_score"] + health_status["dc002_score"]+ health_status["dc003_score"]+ \
- health_status["dc019_score"]+ health_status["dc020_score"] + health_status["dc021_score"]+ \
- health_status["dc022_score"]+ health_status["dc023_score"] + health_status["dc006s1_score"] + \
- health_status["dc006s2_score"] + health_status["dc006s3_score"] + health_status["dc006s4_score"] + \
- health_status["dc006s5_score"] + health_status["dc006s6_score"] + health_status["dc006s7_score"] + \
- health_status["dc006s8_score"] + health_status["dc006s9_score"] + health_status["dc006s10_score"] + \
- health_status["dc006s11_score"] + health_status["dc027s1_score"]+ health_status["dc027s2_score"]+ \
- health_status["dc027s3_score"]+ health_status["dc027s4_score"]+ health_status["dc027s5_score"]+ \
- health_status["dc027s6_score"]+ health_status["dc027s7_score"]+ health_status["dc027s8_score"]+ \
- health_status["dc027s9_score"]+health_status["dc027s10_score"]+health_status["dc027s11_score"]+\
- health_status["draw_score"]
- #心理得分
- health_status["dc009_score"] = health_status["dc016"]-1
- health_status["dc010_score"] = health_status["dc017"]-1
- health_status["dc011_score"] = health_status["dc018"]-1
- health_status["dc012_score"] = health_status["dc019"]-1
- health_status["dc013_score"] = 4 - health_status["dc020"]
- health_status["dc014_score"] = health_status["dc021"]-1
- health_status["dc015_score"] = health_status["dc022"]-1
- health_status["dc016_score"] = 4 - health_status["dc023"]
- health_status["dc017_score"] = health_status["dc024"]-1
- health_status["dc018_score"] = health_status["dc025"]-1
- data_2020["psychiatric_score"] = health_status["dc009_score"] + health_status["dc010_score"] + health_status["dc011_score"] + \
- health_status["dc012_score"] + health_status["dc013_score"] + health_status["dc014_score"] + health_status["dc015_score"] + \
- health_status["dc016_score"] + health_status["dc017_score"] + health_status["dc018_score"]
- data_2020["wave"] = year
- change_columns(data_2020)
- data_2020 = pd.concat([data_2018, data_2020], axis=0)
- #修改地区名称
- #省份、城市名称和污染物数据格式对齐
- #海东地区->海东市
- data_2020['city'] = data_2020['city'].replace('海东地区', '海东市')
- #北京 -> 北京市
- data_2020['city'] = data_2020['city'].replace('北京', '北京市')
- data_2020['province'] = data_2020['province'].replace('北京', '北京市')
- #哈尔滨 -> 哈尔滨市
- data_2020['city'] = data_2020['city'].replace('哈尔滨', '哈尔滨市')
- #天津 -> 天津市
- data_2020['city'] = data_2020['city'].replace('天津', '天津市')
- data_2020['province'] = data_2020['province'].replace('天津', '天津市')
- #广西省 -> 广西壮族自治区
- data_2020['province'] = data_2020['province'].replace('广西省', '广西壮族自治区')
- #巢湖市 -> 合肥市
- data_2020['city'] = data_2020['city'].replace('巢湖市', '合肥市')
- #襄樊市->襄阳市
- data_2020['city'] = data_2020['city'].replace('襄樊市', '襄阳市')
- data_2020.to_csv("/root/r_base/CHARLS/result_all_new.csv", index=False)
- print(123)
|