123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- import pandas as pd
- def sunlight(CHARLS_data):
- years = [2011, 2013,2015, 2018, 2020]
- for year in years:
- #读取日照数据
- sunlight_data_last = pd.read_excel(f"气象数据/2000-2020年按年逐年日照/【{year-1}年】逐年日照.xlsx")
- sunlight_data_last = sunlight_data_last[["城市", "累积日照"]]
- sunlight_data_last = sunlight_data_last.rename(columns={"累积日照":"last_sunlight"})
- sunlight_data_before_last = pd.read_excel(f"气象数据/2000-2020年按年逐年日照/【{year-2}年】逐年日照.xlsx")
- sunlight_data_before_last = sunlight_data_before_last[["城市", "累积日照"]]
- sunlight_data_before_last = sunlight_data_before_last.rename(columns={"累积日照":"before_sunlight"})
- #开始筛选出year的数据
- CHARLS_data_year = CHARLS_data[CHARLS_data['wave']==year]
- #合并日照
- table_merge = pd.merge(CHARLS_data_year, sunlight_data_last, left_on="city", right_on="城市", how='left')
- table_merge = pd.merge(table_merge, sunlight_data_before_last, left_on="city", right_on="城市", how='left')
- #更新CHARLS表
- CHARLS_data.loc[CHARLS_data['wave']==year, 'last_year_sunlight'] = table_merge['last_sunlight'].values
- CHARLS_data.loc[CHARLS_data['wave']==year, 'before_last_sunlight'] = table_merge['before_sunlight'].values
- CHARLS_data.to_csv("CHARLS_data_pollutants_mete.csv",index=False)
- print(year)
- def wind(CHARLS_data):
- years = [2011, 2013,2015, 2018, 2020]
- for year in years:
- #读取日照数据
- wind_data_last = pd.read_excel(f"气象数据/2000-2020年按年逐年风速/【{year-1}年】逐年风速.xlsx")
- wind_data_last = wind_data_last[["城市", "平均风速"]]
- wind_data_last = wind_data_last.rename(columns={"平均风速":"last_wind"})
- wind_data_before_last = pd.read_excel(f"气象数据/2000-2020年按年逐年风速/【{year-2}年】逐年风速.xlsx")
- wind_data_before_last = wind_data_before_last[["城市", "平均风速"]]
- wind_data_before_last = wind_data_before_last.rename(columns={"平均风速":"before_wind"})
- #开始筛选出year的数据
- CHARLS_data_year = CHARLS_data[CHARLS_data['wave']==year]
- #合并日照
- table_merge = pd.merge(CHARLS_data_year, wind_data_last, left_on="city", right_on="城市", how='left')
- table_merge = pd.merge(table_merge, wind_data_before_last, left_on="city", right_on="城市", how='left')
- #更新CHARLS表
- CHARLS_data.loc[CHARLS_data['wave']==year, 'last_year_wind'] = table_merge['last_wind'].values
- CHARLS_data.loc[CHARLS_data['wave']==year, 'before_last_wind'] = table_merge['before_wind'].values
- CHARLS_data.to_csv("CHARLS_data_pollutants_mete.csv",index=False)
- print(year)
- def rain(CHARLS_data):
- years = [2011, 2013,2015, 2018, 2020]
- for year in years:
- #读取日照数据
- rain_data_last = pd.read_excel(f"气象数据/2000-2020年按年逐年降水/【{year-1}年】逐年降水.xlsx")
- rain_data_last = rain_data_last[["城市", "累积降水"]]
- rain_data_last = rain_data_last.rename(columns={"累积降水":"last_rain"})
- rain_data_before_last = pd.read_excel(f"气象数据/2000-2020年按年逐年降水/【{year-2}年】逐年降水.xlsx")
- rain_data_before_last = rain_data_before_last[["城市", "累积降水"]]
- rain_data_before_last = rain_data_before_last.rename(columns={"累积降水":"before_rain"})
- #开始筛选出year的数据
- CHARLS_data_year = CHARLS_data[CHARLS_data['wave']==year]
- #合并日照
- table_merge = pd.merge(CHARLS_data_year, rain_data_last, left_on="city", right_on="城市", how='left')
- table_merge = pd.merge(table_merge, rain_data_before_last, left_on="city", right_on="城市", how='left')
- #更新CHARLS表
- CHARLS_data.loc[CHARLS_data['wave']==year, 'last_year_rain'] = table_merge['last_rain'].values
- CHARLS_data.loc[CHARLS_data['wave']==year, 'before_last_rain'] = table_merge['before_rain'].values
- CHARLS_data.to_csv("CHARLS_data_pollutants_mete.csv",index=False)
- print(year)
- def temperature(CHARLS_data):
- years = [2011, 2013,2015, 2018, 2020]
- for year in years:
- #读取日照数据
- temperature_data_last = pd.read_excel(f"气象数据/2000-2020年按年逐年气温/【{year-1}年】逐年气温.xlsx")
- temperature_data_last = temperature_data_last[["城市", "平均气温"]]
- temperature_data_last = temperature_data_last.rename(columns={"平均气温":"last_temperature"})
- temperature_data_before_last = pd.read_excel(f"气象数据/2000-2020年按年逐年气温/【{year-2}年】逐年气温.xlsx")
- temperature_data_before_last = temperature_data_before_last[["城市", "平均气温"]]
- temperature_data_before_last = temperature_data_before_last.rename(columns={"平均气温":"before_temperature"})
- #开始筛选出year的数据
- CHARLS_data_year = CHARLS_data[CHARLS_data['wave']==year]
- #合并日照
- table_merge = pd.merge(CHARLS_data_year, temperature_data_last, left_on="city", right_on="城市", how='left')
- table_merge = pd.merge(table_merge, temperature_data_before_last, left_on="city", right_on="城市", how='left')
- #更新CHARLS表
- CHARLS_data.loc[CHARLS_data['wave']==year, 'last_year_temperature'] = table_merge['last_temperature'].values
- CHARLS_data.loc[CHARLS_data['wave']==year, 'before_last_temperature'] = table_merge['before_temperature'].values
- CHARLS_data.to_csv("CHARLS_data_pollutants_mete.csv",index=False)
- print(year)
- def humidity(CHARLS_data):
- years = [2011, 2013,2015, 2018, 2020]
- for year in years:
- #读取日照数据
- humidity_data_last = pd.read_excel(f"气象数据/2000-2020年按年逐年湿度/【{year-1}年】逐年湿度.xlsx")
- humidity_data_last = humidity_data_last[["城市", "平均湿度"]]
- humidity_data_last = humidity_data_last.rename(columns={"平均湿度":"last_humidity"})
- humidity_data_before_last = pd.read_excel(f"气象数据/2000-2020年按年逐年湿度/【{year-2}年】逐年湿度.xlsx")
- humidity_data_before_last = humidity_data_before_last[["城市", "平均湿度"]]
- humidity_data_before_last = humidity_data_before_last.rename(columns={"平均湿度":"before_humidity"})
- #开始筛选出year的数据
- CHARLS_data_year = CHARLS_data[CHARLS_data['wave']==year]
- #合并日照
- table_merge = pd.merge(CHARLS_data_year, humidity_data_last, left_on="city", right_on="城市", how='left')
- table_merge = pd.merge(table_merge, humidity_data_before_last, left_on="city", right_on="城市", how='left')
- #更新CHARLS表
- CHARLS_data.loc[CHARLS_data['wave']==year, 'last_year_humidity'] = table_merge['last_humidity'].values
- CHARLS_data.loc[CHARLS_data['wave']==year, 'before_last_humidity'] = table_merge['before_humidity'].values
- CHARLS_data.to_csv("CHARLS_data_pollutants_mete.csv",index=False)
- print(year)
- if __name__ == "__main__":
- #读取CHARLS数据
- CHARLS_data = pd.read_csv("CHARLS_data_pollutants.csv")
- CHARLS_data.to_csv("CHARLS_data_pollutants_mete.csv",index=False)
- CHARLS_data = pd.read_csv("CHARLS_data_pollutants_mete.csv")
- sunlight(CHARLS_data)
- CHARLS_data = pd.read_csv("CHARLS_data_pollutants_mete.csv")
- wind(CHARLS_data)
- CHARLS_data = pd.read_csv("CHARLS_data_pollutants_mete.csv")
- rain(CHARLS_data)
- CHARLS_data = pd.read_csv("CHARLS_data_pollutants_mete.csv")
- temperature(CHARLS_data)
- CHARLS_data = pd.read_csv("CHARLS_data_pollutants_mete.csv")
- humidity(CHARLS_data)
|