123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- # install.packages("msm", repos = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
- library(msm)
- library(survival)
- library(dplyr)
- # View(cav)
- data <- read.csv("paper_data.csv")
- #性别
- data$rgender_group <- factor(data$rgender, levels = c(1, 2), labels = c("Male", "Female"))
- #年齡
- data$age_group <- cut(data$age,
- breaks = c(45, 55, 65, Inf),
- labels = c("45-54", "55-64",">=65"),
- right = FALSE)
- #婚姻
- data$marital_group <- factor(data$marital_status, levels = c(1, 0), labels = c("married or partnered", "other marital status"))
- #教育
- data$education_group <- factor(data$education, levels = c(0, 1, 2), labels = c("below high school", "high school", "college or above"))
- #运动情况
- data$activity_group <- factor(data$Physical_activity, levels = c(0, 1, 2), labels = c("inactive", "moderate", "vigorous"))
- #心理得分
- data$psychiatric_group <- cut(data$Psychiatric_score, breaks = c(0, 10, Inf),labels = c("无抑郁", "有抑郁"), right = FALSE)
- #BMI
- # 使用 cut() 创建因子类型的变量
- data$variable <- cut(data$BMI, breaks = c(0, 18.5, 24, Inf), labels = c("underweight", "normal", "overweight"), right = FALSE)
- # 使用 dplyr::recode 直接替换因子水平
- data$variable <- recode(data$variable, "underweight" = 1L, "normal" = 0L, "overweight" = 2L)
- # 将 data$variable 转换回因子并保留原 levels
- data$BMI_group <- factor(data$variable, levels = c(0, 1, 2), labels = c("normal", "underweight", "overweight"))
- #ADL
- # 使用 cut() 创建因子类型的变量
- data$ADL_group <- cut(data$ADL, breaks = c(0, 1, 3, Inf), labels = c("No impairment", "Mild impairment", "Severe impairment"), right = FALSE)
- summary(data)
- View(data[, c("ADL", "variable")])
- View(data$age_group)
- # 计算状态转移频数表
- freq_table <- statetable.msm(state, ID, data = data)
- print(freq_table)
- # 初始化转移速率矩阵
- qmatrix_init <- matrix(c(-0.5, 0.25, 0.15, 0.1,
- 0.1, -0.3, 0.1, 0.1,
- 0.3, 0.1, -0.5, 0.1,
- 0, 0, 0, 0),
- nrow = 4, byrow = TRUE)
- # 创建初始模型
- crude_init <- crudeinits.msm(state ~ wave, subject = ID, data = data, qmatrix = qmatrix_init)
- View(crude_init)
- # 进行多状态模型分析
- msm_model <- msm(state ~ wave, subject = ID, data = data,
- qmatrix = crude_init,
- covariates = ~ rgender_group+age_group+marital_group+education_group+activity_group+psychiatric_group+BMI_group+ADL_group+Smoke+Drink+last_year_O3+last_year_pm1+last_year_NO2+last_year_NH4+last_year_nl,
- death = 4,
- method = "BFGS", control = list(fnscale = 5000, maxit = 10000)
- )
- # 获取模型结果并转换为字符串
- model_summary <- capture.output(summary(msm_model))
- # 创建一个空的结果文件
- result_file <- "msm_model_results_test.txt"
- write("", file = result_file) # 清空文件内容
- # 写入文件,附加协变量名称
- cat("Results for covariates:", file = result_file, append = TRUE)
- cat(model_summary, file = result_file, sep = "\n", append = TRUE)
- # 查看模型的详细结果
- summary(msm_model)
- # 计算状态转移概率矩阵
- prob_matrix <- pmatrix.msm(msm_model, t = 5) # t = 1 代表随访之间的间隔时间
- print(prob_matrix)
- # 输出拟合模型的速率矩阵
- q_matrix <- qmatrix.msm(msm_model)
- print(q_matrix)
- # 提取转移强度
- transition_intensity <- msm_model$qmatrix
- print(transition_intensity)
- # 计算在每个状态中的平均逗留时间
- so_journ <- sojourn.msm(msm_model)
- print(so_journ)
- # 计算均衡状态概率
- rm(list = ls())
- # 定义协变量列表
- covariates_list <- list(~last_year_NO3, ~before_last_NO3, ~last_year_NH4, ~before_last_NH4, ~last_year_OM, ~before_last_OM, ~last_year_BC, ~before_last_BC, ~last_year_nl, ~before_last_nl)
- # 创建一个空的结果文件
- result_file <- "msm_model_results.txt"
- write("", file = result_file) # 清空文件内容
- # 循环计算不同协变量的模型
- for (cov in covariates_list) {
-
- # 运行msm模型
- msm_model <- msm(state ~ wave, subject = ID, data = data,
- qmatrix = crude_init,
- covariates = cov,
- death = 4,
- method = "BFGS", control = list(fnscale = 4000, maxit = 10000)
- )
-
- # 获取模型结果并转换为字符串
- model_summary <- capture.output(summary(msm_model))
-
- # 写入文件,附加协变量名称
- cat("Results for covariates:", deparse(cov), "\n", file = result_file, append = TRUE)
- cat(model_summary, file = result_file, sep = "\n", append = TRUE)
- cat("\n\n", file = result_file, append = TRUE) # 空行分隔每个协变量结果
- }
|